Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemistry ; 30(1): e202303395, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-37877614

RESUMO

Biohybrid catalysts that operate in aqueous media are intriguing for systems chemistry. In this paper, we investigate whether control over the self-assembly of biohybrid catalysts can tune their properties. As a model, we use the catalytic activity of functional hybrid molecules consisting of a catalytic H-dPro-Pro-Glu tripeptide, derivatized with fatty acid and nucleobase moieties. This combination of simple biological components merged the catalytic properties of the peptide with the self-assembly of the lipid, and the structural ordering of the nucleobases. The biomolecule hybrids self-assemble in aqueous media into fibrillar assemblies and catalyze the reaction between butanal and nitrostyrene. The interactions between the nucleobases enhanced the order of the supramolecular structures and affected their catalytic activity and stereoselectivity. The results point to the significant control and ordering that nucleobases can provide in the self-assembly of biologically inspired supramolecular catalysts.


Assuntos
Lipopeptídeos , Água , Lipopeptídeos/química , Catálise
2.
Chem Soc Rev ; 52(21): 7359-7388, 2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37855729

RESUMO

The field of prebiotic chemistry has been dedicated over decades to finding abiotic routes towards the molecular components of life. There is nowadays a handful of prebiotically plausible scenarios that enable the laboratory synthesis of most amino acids, fatty acids, simple sugars, nucleotides and core metabolites of extant living organisms. The major bottleneck then seems to be the self-organization of those building blocks into systems that can self-sustain. The purpose of this tutorial review is having a close look, guided by experimental research, into the main synthetic pathways of prebiotic chemistry, suggesting how they could be wired through common intermediates and catalytic cycles, as well as how recursively changing conditions could help them engage in self-organized and dissipative networks/assemblies (i.e., systems that consume chemical or physical energy from their environment to maintain their internal organization in a dynamic steady state out of equilibrium). In the article we also pay attention to the implications of this view for the emergence of homochirality. The revealed connectivity between those prebiotic routes should constitute the basis for a robust research program towards the bottom-up implementation of protometabolic systems, taken as a central part of the origins-of-life problem. In addition, this approach should foster further exploration of control mechanisms to tame the combinatorial explosion that typically occurs in mixtures of various reactive precursors, thus regulating the functional integration of their respective chemistries into self-sustaining protocellular assemblies.


Assuntos
Aminoácidos , Origem da Vida , Aminoácidos/química , Nucleotídeos
3.
Chem Sci ; 13(36): 10715-10724, 2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36320689

RESUMO

A major challenge for understanding the origins of life is to explore how replication networks can engage in an evolutionary process. Herein, we shed light on this problem by implementing a network constituted by two different types of extremely simple biological components: the amino acid cysteine and the canonical nucleobases adenine and thymine, connected through amide bonds to the cysteine amino group and oxidation of its thiol into three possible disulfides. Supramolecular and kinetic analyses revealed that both self- and mutual interactions between such dinucleobase compounds drive their assembly and replication pathways. Those pathways involving sequence complementarity led to enhanced replication rates, suggesting a potential bias for selection. The interplay of synergistic dynamics and competition between replicators was then simulated, under conditions that are not easily accessible with experiments, in an open reactor parametrized and constrained with the unprecedentedly complete experimental kinetic data obtained for our replicative network. Interestingly, the simulations show bistability, as a selective amplification of different species depending on the initial mixture composition. Overall, this network configuration can favor a collective adaptability to changes in the availability of feedstock molecules, with disulfide exchange reactions serving as 'wires' that connect the different individual auto- and cross-catalytic pathways.

4.
Chemistry ; 26(5): 1082-1090, 2020 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-31729787

RESUMO

One of the major goals in systems chemistry is to create molecular assemblies with emergent properties that are characteristic of life. An interesting approach toward this goal is based on merging different biological building blocks into synthetic systems with properties arising from the combination of their molecular components. The covalent linkage of nucleic acids (or their constituents: nucleotides, nucleosides and nucleobases) with lipids in the same hybrid molecule leads, for example, to the so-called nucleolipids. Herein, we describe nucleolipids with a very short sequence of two nucleobases per lipid, which, in combination with hydrophobic effects promoted by the lipophilic chain, allow control of the self-assembly of lipidic amphiphiles to be achieved. The present work describes a spectroscopic and microscopy study of the structural features and dynamic self-assembly of dinucleolipids that contain adenine or thymine moieties, either pure or in mixtures. This approach leads to different self-assembled nanostructures, which include spherical, rectangular and fibrillar assemblies, as a function of the sequence of nucleobases and chiral effects of the nucleolipids involved. We also show evidence that the resulting architectures can encapsulate hydrophobic molecules, revealing their potential as drug delivery vehicles or as compartments to host interesting chemistries in their interior.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...